İdiyopatik Dilate Kardiyomiyopatiye Bağlı Kronik Kalp Yetmezliğinde Retinal Mikrovasküler Değişiklikler
PDF
Atıf
Paylaş
Talep
Özgün Araştırma
CİLT: 8 SAYI: 2
P: 161 - 166
Haziran 2023

İdiyopatik Dilate Kardiyomiyopatiye Bağlı Kronik Kalp Yetmezliğinde Retinal Mikrovasküler Değişiklikler

Bagcilar Med Bull 2023;8(2):161-166
1. Kızılay Kağıthane Hospital, Clinic of Ophthalmology, İstanbul, Turkey
2. University of Health Sciences Turkey, Şişli Hamidiye Etfal Training and Research Hospital, Clinic of Ophthalmology, İstanbul, Turkey
3. University of Health Sciences Turkey, Başakşehir Çam and Sakura City Hospital, Clinic of Ophthalmology, İstanbul, Turkey
4. Osmaniye State Hospital, Clinic of Ophthalmology, Osmaniye, Turkey
5. University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, Clinic of Cardiology, İstanbul, Turkey
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 10.10.2022
Kabul Tarihi: 23.04.2023
Yayın Tarihi: 15.06.2023
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Kronik kalp yetmezliğinin en önemli nedenlerinden biri olan idiyopatik dilate kardiyomiyopati (KMP), koroner arter hastalığı olmaksızın sol ventrikül genişlemesine bağlı olarak, sistolik fonksiyonun bozulmasına neden olan bir hastalıktır. Bu çalışmada, optik koherens tomografi anjiyografi (OKTA) kullanarak KMP’si olan hastalarda foveal avasküler zon (FAZ) alanı ve retinal vasküler dansite (VD) değişikliklerini araştırmayı amaçladık.

Yöntem:

Sol ventrikül ejeksiyon fraksiyonu %50’nin altında olan KMP’li 48 hasta (Grup 1) ve 50 kişiden oluşan sağlıklı kontrol grubu (Grup 2) OKTA ile değerlendirildi. FAZ alanı, yüzeyel ve derin parafoveal VD değerleri ve peripapiller alan VD değerleri ölçülerek, gruplar arasında karşılaştırma yapıldı.

Bulgular:

FAZ değerleri Grup 1’de anlamlı olarak daha yüksekti (sırasıyla 0,29±0,09, 0,20±0,05; p<0,001). Ayrıca Grup 1’de parafoveal alanın derin kapiller pleksus ortalama VD değeri anlamlı olarak daha düşüktü (sırasıyla 49,05±3,81, 54,81±2,88; p<0,001). Peripapiller alanın ortalama VD değeri de Grup 1’de anlamlı olarak daha düşük bulundu (sırasıyla 50,54±3,38, 54,66±1,42; p<0,001).

Sonuç:

Çalışmamızın sonuçları bu hasta grubunun takibinde OKTA’nın kullanılabileceğini düşündürmektedir.

Anahtar Kelimeler:
Dilate kardiyomiyopati, kalp yetmezliği, mikrovasküler dansite, optik koherens tomografi anjiyografi

Kaynaklar

1
Remme WJ, Swedberg K; Task Force for the Diagnosis and Treatment of Chronic Heart Failure, European Society of Cardiology. Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 2001;22(17):1527-1560. Erratum in: Eur Heart J 2001;22(23):2217-2218.
2
McMurray JJ. Clinical practice. Systolic heart failure. N Engl J Med 2010;362(3):228-238.
3
Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348(20):2007-2018.
4
Chilian WM. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 1997;95(2):522-528.
5
Gavin JB, Maxwell L, Edgar SG. Microvascular involvement in cardiac pathology. J Mol Cell Cardiol 1998;30(12):2531-2540.
6
Liu PP, Mak S, Stewart DJ. Potential role of the microvasculature in progression of heart failure. Am J Cardiol 1999;84(4A):23L-26L.
7
Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, et al. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association. Circulation 2016;134(23):e579-e646. Erratum in: Circulation 2016;134(23):e652.
8
Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013;34(33):2636-2648, 2648a-2648d.
9
Altinkaynak H, Kara N, Sayın N, Güneş H, Avşar S, Yazıcı AT. Subfoveal choroidal thickness in patients with chronic heart failure analyzed by spectral-domain optical coherence tomography. Curr Eye Res 2014;39(11):1123-1128.
10
Cheung N, Bluemke DA, Klein R, Sharrett AR, Islam FM, Cotch MF, et al. Retinal arteriolar narrowing and left ventricular remodeling: the multi-ethnic study of atherosclerosis. J Am Coll Cardiol 2007;50(1):48-55.
11
Wang L, Wong TY, Sharrett AR, Klein R, Folsom AR, Jerosch-Herold M. Relationship between retinal arteriolar narrowing and myocardial perfusion: multi-ethnic study of atherosclerosis. Hypertension 2008;51(1):119-126.
12
Tedeschi-Reiner E, Strozzi M, Skoric B, Reiner Z. Relation of atherosclerotic changes in retinal arteries to the extent of coronary artery disease. Am J Cardiol 2005;96(8):1107-1109.
13
Wong TY, Rosamond W, Chang PP, Couper DJ, Sharrett AR, Hubbard LD, et al. Retinopathy and risk of congestive heart failure. JAMA 2005;293(1):63-69.
14
Wang J, Jiang J, Zhang Y, Qian YW, Zhang JF, Wang ZL. Retinal and choroidal vascular changes in coronary heart disease: an optical coherence tomography angiography study. Biomed Opt Express 2019;10(4):1532-1544.
15
Li C, Zhong P, Yuan H, Dong X, Peng Q, Huang M, et al. Retinal microvasculature impairment in patients with congenital heart disease investigated by optical coherence tomography angiography. Clin Exp Ophthalmol 2020;48(9):1219-1228.
16
Alnawaiseh M, Eckardt F, Mihailovic N, Frommeyer G, Diener R, Rosenberger F, et al. Ocular perfusion in patients with reduced left ventricular ejection fraction measured by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2021;259(12):3605-3611.
17
White PD, Myers MM. The classification of cardiac diagnosis. JAMA 1921;77(18):1414-1415.
18
Goldman L, Hashimoto B, Cook EF, Loscalzo A. Comparative reproducibility and validity of systems for assessing cardiovascular functional class: advantages of a new specific activity scale. Circulation 1981;64(6):1227-1234.
19
Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 2015;133(1):45-50.
20
Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 2015;112(18):E2395-E2402.
21
Almeida-Freitas DB, Meira-Freitas D, Melo LA Jr, Paranhos A Jr, Iared W, Ajzen S. Color Doppler imaging of the ophthalmic artery in patients with chronic heart failure. Arq Bras Oftalmol 2011;74(5):326-329.
22
Wong TY, Klein R, Klein BE, Tielsch JM, Hubbard L, Nieto FJ. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol 2001;46(1):59-80.
23
Wong TY, Mitchell P. Hypertensive retinopathy. N Engl J Med 2004;351(22):2310-2317.
24
Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990;82(1):1-7.
25
Almeida OP, Flicker L. The mind of a failing heart: a systematic review of the association between congestive heart failure and cognitive functioning. Intern Med J 2001;31(5):290-295.
26
Zelis R, Sinoway LI, Musch TI, Davis D, Just H. Regional blood flow in congestive heart failure: concept of compensatory mechanisms with short and long time constants. Am J Cardiol 1988;62(8):2E-8E.
27
Kaufmann PA, Gnecchi-Ruscone T, Schäfers KP, Lüscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 2000;36(1):103-109.
28
Sellke FW, Armstrong ML, Harrison DG. Endothelium-dependent vascular relaxation is abnormal in the coronary microcirculation of atherosclerotic primates. Circulation 1990;81(5):1586-1593.
29
Li C, Zhong P, Yuan H, Dong X, Peng Q, Huang M, et al. Retinal microvasculature impairment in patients with congenital heart disease investigated by optical coherence tomography angiography. Clin Exp Ophthalmol 2020;48(9):1219-1228.
30
Woo JM, Yoon YS, Woo JE, Min JK. Foveal Avascular Zone Area Changes Analyzed Using OCT Angiography after Successful Rhegmatogenous Retinal Detachment Repair. Curr Eye Res 2018;43(5):674-678.
31
Adhi M, Filho MA, Louzada RN, Kuehlewein L, de Carlo TE, Baumal CR, et al. Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed With Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2016;57(9):OCT486-OCT494.
32
Pichi F, Sarraf D, Arepalli S, Lowder CY, Cunningham ET Jr, Neri P, et al. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 2017;59:178-201.
33
Sun C, Ladores C, Hong J, Nguyen DQ, Chua J, Ting D, et al. Systemic hypertension associated retinal microvascular changes can be detected with optical coherence tomography angiography. Sci Rep 2020;10(1):9580.
34
Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2016;254(6):1051-1058.
35
Rakusiewicz K, Kanigowska K, Hautz W, Ziółkowska L. The Impact of Chronic Heart Failure on Retinal Vessel Density Assessed by Optical Coherence Tomography Angiography in Children with Dilated Cardiomyopathy. J Clin Med 2021;10(12):2659.
36
Celik C, Tokgöz O, Serifoğlu L, Tor M, Alpay A, Erdem Z. Color Doppler Evaluation of the Retrobulbar Hemodynamic Changes in Chronic Obstructive Pulmonary Disease: COPD and Retrobulbar Hemodynamic Changes. Ultrason Imaging 2014;36(3):177-186.
37
Ozer T, Altin R, Ugurbas SH, Ozer Y, Mahmutyazicioglu K, Kart L. Color Doppler evaluation of the ocular arterial flow changes in chronic obstructive pulmonary disease. Eur J Radiol 2006;57(1):63-68.